
Wendy, the Good Little Fairness Widget - Achieving Order
Fairness for Blockchains

Klaus Kursawe

klaus@vega.xyz

ABSTRACT

The advent of decentralized trading markets introduces a number

of new challenges for consensus protocols. In addition to the ‘usual’

attacks – a subset of the validators trying to prevent agreement

– there is now the possibility of financial fraud, which can abuse

properties not normally considered critical in consensus protocols.

We investigate the issues of attackers manipulating or exploiting

the order in which transactions are scheduled in the blockchain.

More concretely, we look into order fairness, i.e., ways we can assure
that the order of transactions relative to each other is fair. We show

that one of the more intuitive definitions of fairness is impossible

to achieve. We then present Wendy, a group of low overhead proto-

cols that can implement different concepts of fairness. Wendy acts

as an additional widget for an existing blockchain, and is largely

agnostic to the underlying blockchain and its security assumptions,

as long as they provide a known and always active set of validators.

Furthermore, it is possible to implement fairness for some subsets

of the transactions, and thus run several independent fair markets

(as well as some unfair ones) on the same chain.

1 INTRODUCTION

In the last years, blockchain applications have increased in com-

plexity and utility, allowing more advanced financial tools such

as exchanges and trading markets to be decentralized. The intro-

duction decentralized trading markets introduces a number of new

challenges for consensus protocols [9, 10]. Classically, consensus

layer protocols only are required to maintain consistency of the

blockchain. While additional requirements have been investigated

in the past – for example causal order or censorship resilience –

very little attention has been given to the fairness of the order of

events, making it possible to execute frontrunning or rushing at-

tacks; several such attacks have been observed in the wild already,

and there is evidence of bots systematically scanning unscheduled

transactions vulnerable to frontrunning [20]. Some blockchains at-

tempt to make such attacks somewhat harder, for example through

special protection for the leader, rapid leader change, or a com-

pletely leaderless approach, while others can be easily manipulated

by a single corrupt validator or a well targeted denial of service

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

AFT ’20, October 21–23, 2020, New York, NY, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8139-0/20/10. . . $15.00

https://doi.org/10.1145/3419614.3423263

attack. In addition to allowing questionable behavior, this can also

be a potential regulatory issue, if exchange are required to prevent

some levels of fraud.

In this paper, we investigate the issues of attackers manipulating

or exploiting the order in which transactions are scheduled in the

blockchain. More concretely, we look into order fairness, i.e., ways
we can assure that the relative order of transactions is fair. We show

that one of the more intuitive definitions of fairness is impossible

to achieve, and present several alternatives.

Our approach integrates with many existing blockchains without

significant change or non-standard assumption on the blockchain

implementation . The main requirement is that there is some set

of parties (resp. validators) known to each other through which

fairness is defined. This comes natural to most voting based proto-

cols, while longest-chain based protocols with an undefined set of

participants will need to use a mixed model approach to be compat-

ible with our model. This allows us to combine several variations

of fairness with different blockchains, have different degrees of

fairness for sets of transactions running on the same blockchain,

and even change the configuration on the fly without needing to

break the chain. This setup can also come especially handy if one

wants to formally verify the protocols – it is vital here to have

the small, independently verifiable components and to not need to

formally verify dozens of variations of the same protocol.

2 MODEL AND ARCHITECTURE

Our model extends the system model and definitions of Cachin,

Kursawe, Petzold, and Shoup [6]. Thus, we assume a known set

of 𝑛 validators that are permanently active and can identify each

other, and that the number of byzantine corrupted parties is just

less than a third of all parties (i.e., 𝑛 = 3𝑡 + 1), though the approach

can easily be expanded to a staking model or general adversary

structures [15]. We assume that an attacker has complete control

over the time and order of message delivery, but is not allowed to

completely drop a message. Furthermore, we assume that messages

are authenticated, and that all participants can sign messages as

well as verify each others signatures. In addition to the classical

byzantine nodes, we also assume rogue traders might try to game

the system to get an unfair advantage, especially to get ahead on

performing a transaction. These traders can collaborate with any

amount of other traders as well up to a third of the validators; in

fact, formally we assume that all traders are under control by the

adversary.

In the taxonomy of [13] this would be a asynchronous, permis-

sionless network with point-to-point communication, though we

25

https://doi.org/10.1145/3419614.3423263

would like to stress that there is no limit on network participa-

tion as long as all active validators are aware of each other. For

the sake of ease of description, we omit the finer details of a for-

mal model that allows for the clean integration of cryptographic

assumptions [6, 13, 14].

One can argue that in modern blockchain implementations, the

attack model has gotten somewhat more complex. In addition to

validators that are as malicious as possible to violate a security goal

(which one usually assumes to be limited to 1/3), there is now also

the concept of selfish validators that do not intent to violate a secu-

rity goal, but to optimize their individual (financial) outcome. For

the case of our protocol, this distinction less relevant, as the only

safety property we are worried about is fairness; all other safety

properties, as well as an infrastructure for incentives, is assumed

to be performed externally, e.g., by the underlying blockchain. One

consideration in this respect is that it is possible that the incentive

mechanism of an underlying blockchain can undermine our proto-

col by motivating all validators to cheat independently in the same

way – if transactions can come with their own fees, and those fees

are (at least potentially) distributed to all validators involved in

the fairness preprotocol, then every participant has an incentive to

prefer high paying transactions; thus, if the protocol is to be used

in a setting where this is a danger, the validators performing the

fairness preprotocol would require a separate incentive mechanism.

The validators receive external requests from the traders. We

make no assumption on the timing or the order, which is under

complete control from the adversary. The blockchain protocol then

delivers the requests, i.e., puts them into a block while satisfying the

basic properties of atomic broadcast. In practice, to optimize band-

width, the protocol would likely not use the requests themselves,

but hashes thereof. For the sake of presentation, we will use the

term request even when a hash would be sufficient. Messages are

send by a simple multicast with no requirements on consistency

or safety. While there might be some room for optimization if in-

telligent gossiping protocols are used, our only requirement for

the communication layer is that messages between honest parties

eventually arrive. An alternative model in the literature is the GST

model going back to Dwork, Lynch, and Stockmeier [12], which

in some interpretations does allow for some message loss. In this

model, the adversary is allowed to arbitrarily delay or drop mes-

sages until a time called the global stabilization time, after which
she needs to deliver all messages within a known timeout. In this

model, protocols essentially try to not violate safety before GST,

and then assure liveness after. While we don’t model our protocols

in this setting, they work in it just as well as long as lost messages

are resend.

The goal of our design is not to build a new blockchain that

includes fairness, but to build a module that can be added to existing

blockchain designs. To this end, we provide a pre-protocol that is

run by the validators in parallel to the actual blockchain. The pre-

protocol outputs valid blocks that assure order fairness. While these

blocks can be generated by every validator, in most consensus

implementations, blocks are proposed by only one or very few

parties. To this end, we define a set of designated leader(s) which

execute the part of the protocol that generates blocks. The leader

part does not involve any communication though, and thus could be

executed by every participant without additional communication

effort. In addition, we need to modify the block-validity function

– proposed blocks are not valid unless it is also verified that the

fairness conditions have been satisfied.

To be able to use more established formal definitions, we assume

that our protocol communicates with an atomic broadcast subpro-

tocol; for all practical purposes, this is equivalent to a blockchain

in our context. We make no assumptions on how the underlying

atomic broadcast protocol is implemented, and what – if any –

timing assumptions it uses. In fact, our preprotocol can work in a

completely different model than the underlying blockchain – while

our model has a voting/quorum based approach in mind, the blocks

generated by the fairness pre-protocol can es well be processed by

a Nakamoto style implementation such as Ethereum or Ouroboros,

not unlike the approach that Casper is taking to add finality [5] to

a longest chain protocol. We do, thus, assume that the participants

in the fairness protocol know and recognize each other, that all

participants are trying to deliver a continuous service, and that the

underlying incentive model does not create an incentive for all par-

ticipants to try and undermine fairness. While it would be helpful

to assume the same for the blockchain protocol, this is not strictly

necessary, and the different models of a longest-chain protocol and

the voting based model for our protocol can coexist in parallel,

though then for practical reasons with different sets of validators.

It is, for example, possible to use the fairness protocols presented

here to add order fairness to (some) Ethereum transactions, as long

as it is possible to enforce our new validity condition for that chain

and assure the the underlying blockchain only accepts the blocks

we generate in the order we generated them.

As we envision a blockchain that handles a diversity of transac-

tions, order fairness only needs to be assured for subsets - it is not

necessarily required that a request related to trading cryptokitties

is treated fairly with respect to a request related to crop prices in

Australia. Thus, every transaction has a market-identifier𝑚𝑖𝑑 , and

only transactions that have the same market-identifier need to be

fair with respect to each other. As we provide different fairness

models, it is also possible to use different fairness pre-protocols for

different markets, and omit fairness altogether for others. There

is even a possibility that a single request has several market iden-

tifiers and thus is delivered in a relatively fair way with respect

to several, otherwise independent markets. The main issue with

the latter is that it adds quite some complexity if we want to have

different fairness protocols for different markets. While there is no

fundamental issue with this, we do not include this property for

our protocols in this paper for the sake of (relative) simplicity.

2.1 Related Work

The only work we are aware of that looks at order fairness is par-

allel work from Kelkhar, Zhang, Goldfeder, and Jules [14]. They

also identify the impossibility of strict fairness and resolve to ad-

dress block fairness. While our approach is to weaken the fairness

condition to circumvent the impossibility of block fairness, they

define a concept of weak liveness wile maintaining the stronger

fairness condition to this end, and define a set of protocols (both

2

26

synchronous and asynchronous) to provide order block fairness.

The price for the stronger fairness is that there is no limit on when

requests are delivered or how big a block becomes, though the pro-

tocols could easily be adapted to one of our models. Their approach

also differs in the architecture - while we aim to have a module to

be combined with existing atomic broadcast protocols and provide

maximum resilience for asynchronius networks (i.e., n > 3t), their

work presents a stand-alone protocol for 𝑛 > 4𝑡 .

The concept of causality in state machine replication was first

introduced by Birman and Reiter [19], with the example of prevent-

ing stock trading fraud. The definition was later refined by Cachin,

Kursawe, Petzold, and Shoup [6], and again by Duan, Reiter, and

Zhang [11]. While the details in the definitions do matter for mean-

ingful proofs and avoiding less straightforward attacks, the basic

idea of these definitions is the same; a message is processed by

the protocols in a way that its position in the ordering is fixed

before any participant learns of its content. While this is sufficient

to prevent some financial fraud – especially if we also allow the

sender of a request to remain anonymous until the transaction is

scheduled – the protection offered by commit and reveal is not

sufficient. Especially in cases of high volatility, traders can still get

an advantage if they can schedule transactions faster than their

peers.

The notion of fairness has been used in different contexts in

the literature. In the context of block delivery, the concept was

formally introduced in [6], though some extend of fairness is al-

ready provided by earlier protocols such as Castro and Liskovs BFT

protocol [8]. In this definition, fairness essentially requires that a

blockchain is fair if the time between 𝑡 + 1 honest parties being

aware of a request and that request being delivered is bounded. This

concept is somewhat similar (and sometimes used as a synonym) to

censorship resilience [18], though that term as well has now taken

on a multitude of meanings in the literature, and usually does not

rule out an unfair delay in delivering a request. In terms of order

fairness, fair protocols at least give an upper bound on the level

of unfairness – while it is possible that requests are processed in

a different order than they arrived, the number of requests that

can rush ahead of a particular request is limited. In [17], a different

fairness definition is defined – here, fairness requires that all val-

idators get an equal opportunity to get their transactions into the

blockchain. This is a different model than we assume, as we want to

achieve fairness for transactions coming from external participants,

while this protocol assures fairness between the validators. There

is some relation though, as fairness between validators assures that

the dishonest validators cannot dominate the blockchain, and thus

requests seen by all honest validators are processed somewhat fast.

The proof-of-work model has a different approach to fairness.

Essentially, if the majority of miners are honest, and the number

of transactions is smaller than the maximum the network can han-

dle, the probability that some winning miner will process a given

transaction soon is relatively high (though there is no strict upper

bound). This effect is diluted by an economic argument though – if

(as the case in Ethereum and Bitcoin) it is possible to pay miners

for preferred treatment, the delay until a particular request is deliv-

ered can become fairly high. In terms of order fairness, this feature

makes the blockchains unfair by design – it is explicitly build in

that clients who pay more can get preferred treatment. While this

form of capitalistic fairness makes sense in some settings, it also

opens the door for abuse [20], and can lead to prohibitively high

fees in busy times.

Some of the more recent protocols [1, 4] frequently exchange the

leader even in the absence of observable misbehavior. This makes it

harder for an attacker to impose controlled unfairness, as it is harder

to assure a corrupted validator is in charge of scheduling when

the adversary needs it, though it might be possible to remove the

honest leader with a limited denial of service attack. An additional

countermeasure is to choose the next leader randomly, decreasing

another level of control of the adversary. Fully randomized proto-

cols [6, 18] also make it harder for an attacker to control the level

of unfairness. Nevertheless, an attacker can still cause unfairness to

a large extent, and – while the unfairness is harder to control – the

protocols are not necessarily order fair, i.e., preserving the order in

which requests come when delivering them.

3 THE IMPOSSIBILITY OF FAIRNESS

The term fairness has found numerous definitions in the atomic

broadcast and blockchain literature.Most commonly, fairnessmeans

one of the following:

• every request eventually gets scheduled

• every request gets scheduled within a bounded time or num-

ber of implementation related messages

Additional constraints depend on the model used, e.g., requests

only need to be scheduled within a bounded time after GST (Global

Stabilisation Time).

For many consensus protocols, fairness does not come naturally.

Especially for leader-based protocols, a leader can easily suppress

a message. There are a number of countermeasures against this.

In [8, 16], replicas watch a leader and dispose of them if they are

dishonest; other protocols[1, 2] change the leader frequently, in the

hope that an honest leader will eventually handle all outstanding

requests. With the exception of [16], no protocol can give strong

bounds on when a message is actually scheduled – the time until

a message gets scheduled depends on the accuracy of the timing

assumptions and is thus depended on an out-of-protocol factor.

Leaderless protocols [6, 18] tend to have better implicit fairness

protection; while they tend be a little slower than leader based ones

(at least in a well-behaved network), the decreased effort to assure

fairness can give those protocols an edge in a trading blockchain.

As we are anyhow sorting transactions into blocks (this comes

rather natural for a blockchain), though it is possible to use logical

blocks that encompass several blockchain blocks. In addition to

order fairness, this also assures fairness as defined above. The pre-

protocol each party would follow looks as follows (unoptimized

version, basing on a leader based atomic broadcast protocol for

simplicity):

Definition 1 (Block Fairness). After a request has been seen by

𝑛−𝑡 honest parties, it will be scheduled in the next block; if it hasn’t
3

27

been seen by at least one honest party, it will not be scheduled in

the next block.

This is relatively easy to implement – before the ordering proto-

col starts, every validator sends around a list of all requests they

have seen; a valid proposal for a block then consists of the transac-

tions out of 𝑛 − 𝑡 of these sets that got 𝑡 + 1 votes.

In the setting we envision for our blockchain, even the stronger

definition of fairness is insufficient. In addition, we also want order
fairness, which more captures the intuitive meaning of the word –

if one request is send before another request, it would be fair if it is

also scheduled first.

Definition 2 (Order Fairness). A byzantine fault tolerant total

ordering protocol is called order fair if the following holds: If all

honest parties receive request 𝑟1 before request 𝑟2, then 𝑟1 is deliv-

ered before 𝑟2.

However, this definition of fairness is not only impossible to

achieve, but inherently contradictory even if only one party is

corrupt.

Proof (sketch). Suppose we have 𝑛 parties 𝑃1, ..., 𝑃𝑛 , and 𝑛 requests

𝑟1, ..., 𝑟𝑛 . Then let party 𝑃𝑖 get the transaction requests in the order

𝑟𝑖 , 𝑟𝑖+1, 𝑟𝑖+2, ..., 𝑟𝑛, 𝑟1, 𝑟2, ..., 𝑟𝑖−1. Now for every 𝑗 , the only party that

sees 𝑟 𝑗 before 𝑟 𝑗−1 is party 𝑃 𝑗 ; all other parties see 𝑃𝑟 𝑗−1 before 𝑟 𝑗 ;
also, 𝑃1 is the only party that sees 𝑟1 before 𝑟𝑛 .

If all parties are honest, then there is no dedicated message order

– no two requests will have been seen in the same order by all

honest parties. However, if any party 𝑗 is dishonest, then 𝑟 𝑗 must

be scheduled after 𝑟 𝑗−1, as 𝑃 𝑗 is the only party to see 𝑟 𝑗 before 𝑟 𝑗−1
(if 𝑃1 is dishonest, 𝑟𝑛 must be scheduled before 𝑟1).

As the honest parties following the protocol do not know who

is dishonest, the outcome of the ordering protocol must be cor-

rect independently of which party is dishonest. Thus, for all 𝑖 ,𝑟𝑖
must be scheduled before 𝑟𝑖+1 as well as 𝑟𝑛 before 𝑟1, which is a

contradiction. 2

One way out would be to only require 𝑟2 and 𝑟1 to be in the

same block. However, even that might not be possible, and there

is another weakness in this definition: The corrupt parties might

see 𝑟2 long before any honest party would see 𝑟1, thus our protocol

essentially can’t schedule anything seen by 𝑡 parties only; it seems

hardly fair if 𝑡 validators cannot get a message scheduled that every

client can schedule. We leave it to further work to find further

definitions for order fairness that are efficiently achievable and

might serve some usecases better.

Definition 3 (Order Fairness, 2. attempt). A byzantine fault toler-

ant total ordering protocol is called order fair if the following holds:
If all honest parties receive request 𝑟1 before request 𝑟2, then 𝑟1 is

delivered in the same block as 𝑟2 or earlier.

This definition is in fact a bit weaker than we require – it is still

possible to achieve order fairness as defined before for all transac-

tions that are decidable, and use a separate approach (e.g., a pseudo

randomized schedule) for the undecidable ones. As this can easily be

added by a local, deterministic algorithm once fairness following the

above definition is achieved, and there may be a multitude of ways

an application may want to resolve an undecidable situation, we

focus on achieving fairness on a block level for Wendy as presented

here and leave the block-internal sorting to the implementation.

Unfortunately, we can show that even with the weaker defi-

nition we cannot always achieve fairness; more precisely, while

there are no undecidability issues anymore, we cannot guarantee

termination.

Proof (sketch). In above proof, we have shown that there exists a

schedule in which the required order of messages depends on which

party is faulty, thus requiring to take into account a parameter that

is not known to an honest party. In this proof, we build on that

construct to design a schedule that would create a block of unlimited

size.

For this outline, we assume 𝑛 = 4 and 𝑡 = 1. Consider two sched-

ules as used above, i.e.,

𝑃1:𝑚1,𝑚2,𝑚3,𝑚4

𝑃2:𝑚2,𝑚3,𝑚4,𝑚1

𝑃3:𝑚3,𝑚4,𝑚1,𝑚2

𝑃4:𝑚4,𝑚1,𝑚2,𝑚3

and

𝑃4:𝑚5,𝑚6,𝑚7,𝑚8

𝑃3:𝑚6,𝑚7,𝑚8,𝑚5

𝑃2:𝑚7,𝑚8,𝑚5,𝑚6

𝑃1:𝑚8,𝑚5,𝑚6,𝑚7

Both schedules area split into three segments as shown below:

𝐴1 𝐴2 𝐴3

𝑃1 𝑚1 𝑚2 𝑚3 𝑚4

𝑃2 𝑚2 𝑚3 𝑚4 𝑚1

𝑃3 𝑚3 𝑚4 𝑚1 𝑚2

𝑃4 𝑚4 𝑚1 𝑚2 𝑚3

𝐵1 𝐵2 𝐵3

𝑃1 𝑚8 𝑚5 𝑚6 𝑚7

𝑃2 𝑚7 𝑚8 𝑚5 𝑚6

𝑃3 𝑚6 𝑚7 𝑚8 𝑚5

𝑃4 𝑚5 𝑚6 𝑚7 𝑚8

We now link those two schedules to one combined schedule with

the segment order 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3.

By the design of schedules A and B, to achieve fairness,𝑚1,𝑚2,

𝑚3, and𝑚4 must be in the same block. The same holds for𝑚5,𝑚6,

𝑚7, and𝑚8. The argument for this is equivalent to the previous

proof; as it is not known to the honest parties who is honest and

who not, the requirement could imply that𝑚1 has been seen by

all honest parties before 𝑚2 (if 𝑃4 is corrupt), 𝑚2 before 𝑚3, 𝑚3

4

28

before𝑚4, and𝑚4 before𝑚1. Thus, all those messages need to be

scheduled in the same block.

In the combined schedule, we also have all honest parties see𝑚7

before𝑚4. Thus,𝑚7 must be scheduled in the same or an earlier

block than𝑚4. Similarly,𝑚3 needs to be in the same or an earlier

block than𝑚8. As𝑚7 and𝑚8 and respectively𝑚3 and𝑚4 must be

in the same block, this means all messages have to be scheduled in

the same block.

If we combine the segments the other way around, i.e., 𝐵1, 𝐴1,

𝐵2, 𝐴2, 𝐵3, 𝐴3, we get the same result: 𝑚7 is seen by all parties

before𝑚4, and𝑚3 is seen by all parties before𝑚8, meaning that

still both segments need to be in the same block.

We can now repeat this construction. Suppose we have segment

𝐶 in the same structure as segment 𝐴, and segment 𝐷 in the same

structure as segment 𝐵. Then consider the schedule

𝐴1, 𝐵1, 𝐴2 ,𝐶1, 𝐵2, 𝐴3, 𝐶2, 𝐵3, 𝐶3

By above argument, all messages in 𝐴 and 𝐵 need to be in the

same block; the addition of the messages from segment 𝐶 does not

affect the argument. Similarily, all messages in 𝐵 and 𝐶 need to be

in the same block; this is unaffected by 𝐴. In the same way, we can

add 𝐷 in a way that it needs to be in the same segment as 𝐶:

𝐴1, 𝐵1, 𝐴2 ,𝐶1, 𝐵2, 𝐴3, 𝐷1, 𝐶2, 𝐵3, 𝐷2,𝐶3,𝐷3

This construction can be arbitrarily repeated, leading to an in-

finite sequence of messages that all need to be in the same block.

2

A notable property of our result is that we do not need a cor-

rupted party to actually act in any bad way – it is enough that there

is some party that has the label ’corrupt’, and noone knows which

one it is. While we haven’t worked out the proof, it is likely even

impossible if we only require fairness if noone actually is corrupt.

To assure liveness in an asynchronous system, the protocol still

needs to progress on 𝑛 − 𝑡 inputs, which means it misses some

information that might be relevant to define a valid order. We did

at this point not investigate further, as we prefer to have a protocol

that offers somewhat weaker fairness, but maintains robustness in

the face of a byzantine adversary.

There are subtle differences in the underlying model that impact

what the construction actually means. In some models – essentially

the cryptographically sound ones that assume a polynomial time

bound adversary [6, 14]- one assumes that the number of incoming

(and adversary generated) requests is somehow bounded, i.e., at

some point the protocol terminates for good. In this model, our

construction does not strictly violate liveness – what happens is

that, to satisfy fairness, all requests will be delivered in the one and

only block the protocol ever schedules just prior to termination. For

those models, we do not prove impossibility of block order fairness,

but impossibility of any meaningful efficiency guarantees – in the

worst case, order fairness is reached by treating all parties equally

bad. If we assume a model that allows for infinite protocol runs, the

last point in time does not exist, and a protocol cannot guarantee

to deliver anything.

The other interesting modeling aspect is the amount of asyn-

chrony required. In the schedule above, once we start interleaving

the D-blocks, all messages in the A-block have been seen by all

honest parties. This implies that we do not need a fully asynchro-

nous system. For a consensus between 𝑛 parties, if 𝛿𝑡𝑟 is the time

interval between the first honest party becoming aware of a request

𝑟 and the last honest party doing so, then the adversary needs to

show honest parties less than 3𝑛 other requests during 𝛿𝑡𝑟 . Thus,

our construction is also possible in most synchronous systems, as

long as the adversary can generate/access sufficient requests in the

given time-span and has the power to freely determine a schedule

in which an honest party sees any set of 3𝑛 consecutive requests.

Thus, if we bound the number of requests the adversary is al-

lowed to show to honest parties in between the times when the

first honest party saw a particular request and the last honest party

saw it, the impossibility result still holds.

Theorem 1. There exists a schedule such that, to achieve block
order fairness, all requests any honest party ever seen need to be
scheduled in the same block. Consequently, no block can be delivered
with this schedule while new requests can be generated.

Furthermore, once an honest party has seen a request r, the schedule
requires less than 3𝑛 other requests to be operated on until the last
honest party sees 𝑟 .

4 CIRCUMVENTING THE IMPOSSIBILITY

We first show a protocol that can guarantee fairness, but does not

overcome the liveness issues mentioned above, i.e., it is possible for

an adversary to prevent termination. For the ease of description,

we describe a somewhat wasteful version of the protocol which

resends all requests that did not make it into a block for the next

block; in a real implementation, this would be handled in a more

efficient way. Also, the protocol as described is sending a lot of sig-

natures repeatedly; that, too, can be optimized in an implementation

version.

We describe our protocol as a pre-protocol to the atomic broad-

cast. The pre-protocol generates a proposal for a block that can then

be proposed as the next block for the atomic broadcast protocol,

alongside validation information that allow verifying that the block

was properly generated. To this end, we assume an atomic broad-

cast protocol following the definition of [6]. In addition to needing

an external validity property, i.e., there is a validation function such

that an honest party only accepts an output 𝑟 with added validation

information if the verification function holds. be one party, or every

party intending to construct a valid proposal. For simplicity, we

also assume that the protocol is re-invoked upon termination by

the atomic broadcast protocol, and that the framework assures that

messages linked to undelivered requests are replayed to the next

incarnation of the pre-protocol in the same order, and messages

linked to delivered requests are ignored. The reason to structure

the protocol this way (rather than having an infinite loop that in-

vokes the atomic broadcast protocol and taking care of messages

itself) lies in the modular architecture we want to allow - the fair-

ness pre-protocol is an optional add-on to the atomic broadcast,

5

29

and thus should be a pre-protocol invoked by the atomic broad-

cast rather than the other way around, and it must be possible for

one atomic broadcast protocol to use different pre-protocols for

different markets.

One issue with this approach is that fairness in the traditional

sense – if every instance of the pre-protocol terminates, then every

request that is seen by all honest party also is delivered (preferably

in a bounded time) in some block – is no longer a property of

the pre-protocol, but of the combination. This can however easily

be derived from order fairness if we show that every terminated

instance of the pre-protocol delivers a non-empty block:

• By assumption, messages that have not been delivered are

treated by the next incarnation of the pre-protocol as if they

arrived at the same time in the same order

• The protocol guarantees progress, i.e., at least one request is

delivered into a block on each terminating incarnation

• By the order fairness requirement, for every request that has

been seen by all honest parties, there is a finite number of

requests that can be scheduled in an earlier block.

.

We say that a request 𝑟 ′ blocks another request 𝑟 given the current
information, it cannot be excluded that 𝑟 needs to be in the same or

an earlier block to achieve block order fairness. More precisely, 𝑟 ′

blocks 𝑟 if 𝑟 and 𝑟 ′ share a market-identifier, and it is not the case

that 𝑡 + 1 parties

• have reported to have seen 𝑟 before 𝑟 ′, i.e., assigned it a lower
sequence number, or

• have reported to have seen 𝑟 and all requests with a lower

sequence number, but not 𝑟 ′.

Lemma 2. If 𝑟 ′ does not block 𝑟 , then 𝑟 ′ is not required to be in the
same or an earlier block than 𝑟 by the requirements of block order
fairness.

Proof. To be required to be in the same or an earlier block, all honest

parties need to have seen 𝑟 ′ before 𝑟 . If 𝑡 + 1 parties report to have

seen 𝑟 ′ after 𝑟 , at least one of them is honest, and thus not all honest

parties have seen 𝑟 ′ before 𝑟 . 2

The following defines how a valid vote and block look like:

Definition 4 (Vote-Validity). A vote is valid if it has the proper

format, and once all requests with a lower sequence number from

that voter have been received.

Definition 5 (Block-Validity). A block B is valid if it contains a

nonempty set of requests with 𝑛 − 𝑡 valid votes each; a vote for 𝑟 is

valid if it contains the signed votes for all requests for that block

with a lower sequence number. Furthermore, for every 𝑟 in B, if

there is a request 𝑟 ′ in the vote validation that had at least 𝑡 + 1

votes with a lower sequence number than 𝑟 , then 𝑟 ′ needs to be in

B accompanied by 𝑛 − 𝑡 validation votes.

Theorem 3. The protocol Neverending Wendy guarantees safety,
i.e., if a block is sent to the atomic broadcast protocol, and there are
requests 𝑟 and 𝑟 ′ such that all honest parties have seen 𝑟 ′ before 𝑟 ,
then 𝑟 ′ is in the same or an earlier block than 𝑟 .

Pre- Protocol Neverending Wendy for block 𝑏 and protocol
instance 𝐼𝐷
All parties:

let 𝑖 be the counter of incoming requests, starting at 0.

while no valid proposal has been seen as the proposal for atomic broad-

cast for block 𝑏 do
for all known and unscheduled request 𝑟 , in the order of the

receiving the requests, send the signed message (𝐼𝐷 ,𝑏,𝑖 ,𝑟) to

all parties, where 𝑖 is the sequence number of that request.

end while
Additional protocol for the leader(s):

B = ∅
wait until the first request 𝑟 is contained in the signed and valid votes

from 𝑛 − 𝑡 parties; add 𝑟 to B
while any request 𝑟 ′ ∉ B blocks any other request 𝑟 ∈ B,

if request 𝑟 ′ has at least 𝑛 − 𝑡 votes, add 𝑟 ′ to B
end while
The proposal for the next block of the atomic broadcast is B, validated

by all signed votes for requests in B.

Proof. If the leader is honest, it will place at least one request in B.

By the protocol logic, B will be delivered once no request not in B
blocks any request in B.

As the validity proof contains all the history that lead to the def-

inition of the block, every valid block has to satisfy the conditions

for block order fairness. If the leader is dishonest, the only misbe-

havior (apart from deliberately not terminating the pre-protocol) is

to suggest different valid blocks to different parties. This, however,

is easily caught by the atomic broadcast protocol. Other dishonest

parties can report different orders to different leaders (if those exist).

This also is caught by the atomic broadcast protocol (which in this

case should select one of those blocks as the next one), as well as

requiring contradictory signatures that are then provable exposing

the corrupt party.

2

Unfortunately, in a fully asynchronous system, this definition

cannot guarantee termination. As we have shown in the previous

section, it is possible for an adversary to construct a schedule in

which an arbitrary amount of messages needs to be put into the

same block; thus, an adversary with sufficient influence on message

ordering can keep the protocol process one block forever. Even in

a synchronous system, this issue is not automatically resolved. An

adversary that needs to respect upper bounds on message delivery

can still create a infinite schedule as long as she has full control on

the order of message scheduling.

Consequently, we also cannot quantify absolute fairness in this

setting – once a request is seen by all honest parties, there is no

upper bound on when it is delivered. The only statement we can

make is about the block it will be contained in (which depends

on the number of undelivered earlier requests), but not on the

time or communication effort until that block is delivered. As this

issue is tied to the possibility of an infinite loop, the approaches

discussed below we are proposing to handle this problem will also

allow for absolute fairness, as long as the underlying blockchain

can guarantee it.

6

30

4.1 Armageddon

If the protocol terminates due to lack of usage (i.e., there are nomore

requests to be scheduled), then the impossibility result no longer

holds – in the worst case scenario, the protocol only schedules one

block after the genesis block which then contains all transactions

(one could argue that such a behavior may hasten the end-of-time

scenario as users abandon the system). What is left to show is that

all requests that an honest party has seen actually are delivered. This

model also assumes that the adversary cannot keep the protocol

running forever by generating its own transactions. This would

usually be the case as (a) forever is a very long time and a concept

that doesn’t exit in a cryptographically strict model, (b) usually

transactions cost money to incentivise the validators, so such an

adversary would spent an unlimited amount of money to prevent

protocol termination.

If the protocol terminates while still in operation due to valida-

tors opting out. In this case, a weaker form of liveness is required -

while the protocol should have created all the blocks it could before,

it cannot be expected to deliver every single request in that set-

ting. While we do not quantify which messages can get lost under

these conditions, [14] provides the formalism to cleanly define such

end-time scenarios.

4.2 Relative Synchrony Assumption

One reason why the impossibility result works is that we allow

the adversary to completely control the schedule, i.e., the order in

which all parties see all requests. This is an unrealistically strong

adversary; it is usually defined that way as it is rather hard to model

a realistic worst case network attack. In the following, we define

an adversary who is almost that strong, but has a (small) failure

probability. For this definition, we assume that there is some form

of global time, which is unknown to the individual parties.

Definition 6 (Probabilistic Adversary Failures). If two messages

𝑚1 and𝑚2 are sent by honest parties such that𝑚1 has been sent

before𝑚2, then with at least probability 𝑝 ,𝑚1 is delivered before

𝑚2.

While this definition invalidates the impossibility result and

allows for an algorithm to achieve order fairness, we still run into

practical issues. If 𝑝 is unknown (analogous to the failure detectors,

where it is unknown when a party is rightfully suspected), then

we have no known upper bound for the block size and, relatedly,

latency. Even if 𝑝 is known, the maximum possible blocksize can

be prohibitively large for any practical implementation.

Note that this definition also adds enough synchrony to allow

for deterministic byzantine agreement, as the adversary will (even-

tually) fail to prevent termination.

4.3 Probabilistic Block Order Fairness

Definition 7 (Probabilistic Block Order Fairness). A byzantine

fault tolerant total ordering protocol is called probabilistically block
order fair if the following holds: There is a fixed probability 𝑝 such

that, if all honest parties receive request 𝑟1 before request 𝑟2, then

𝑟1 is delivered in the same block as 𝑟2 or earlier for with at least

probability 𝑝 .

This definition allows a protocol to at some point stop assuring

fairness and put the already processed messages into the next block,

even if that means that some messages are scheduled unfairly. To

achieve termination at sacrificing some level of fairness, we can set

a threshold 𝑟𝑚𝑎𝑥 and artificially terminate the protocol once the

number of requests in𝑅 exceeds 𝑟𝑚𝑎𝑥 . This means that an adversary

with sufficient network control can cause a limited amount of un-

fairness (i.e. scheduling some requests out of a fair order), however,

the majority of all requests will be scheduled fairly, and causing

an unfair order does require a very high level of network control

for the adversary. Of course, the cut-off point can also be defined

taking other factors into account, e.g., a timeout, the number of

requests in the queue, etc.

We can strengthen this approach by adding a random factor. In

that setting, once 𝑟𝑚𝑎𝑥 is exceeded, we use a common coin [7] to

determine when the protocol stops. This could be done in a way

that the result is unpredictable even for the leader - after each re-

quest added to 𝐵 beyond 𝑟𝑚𝑎𝑥 , the leader can request a coin from

all other parties defining on whether or not she should stop at that

point. Thus while an adversary with extensive network control can

cause an unfair scheduling, she has no influence on who is treated

unfairly. Communication overhead can be managed by piggyback-

ing the coin shares to the voting messages; furthermore, as the

attacker gains little apart from a small slowdown of the protocol,

one could hope that most economic attackers would not attempt

such an attack, and thus in most cases the protocol terminates

before reaching 𝑟𝑚𝑎𝑥 . While this allows the timing model to be

unchanged, the required maximum blocksize is linked to 𝑝; if 𝑝 is

to be very small (e.g., one in a million), the number of messages

that in a block that the protocol needs to be capable of handling is

correspondingly high.

One blemish with this approach (as well as the definition) is that

the probability distribution is somewhat ugly. Ideally, one would

like an equal probability for each transaction in a block under

attack to be treated unfairly; out approach can not deliver that, but

is aimed to create enough uncertaincy that a targetet attack on a

specific transaction will have a significant likelyhood to fail. Given

the dependency on the attacker behaviour, it is not clear at this

point if a better definition can be made; this would be an interesting

topic for future work.

One important point to note is that while our protocol only

provided block fairness, in most cases, it is possible to provide

transaction-level fairness as defined in Definition 2, as the the loops

that cause an undecidable schedule should be reasonable scarce

during a normal run. While Wendy as described here only assures

Block order fairness, it also attaches sufficient auxiliary information

to the transactions to allow a (deterministic) post-processing algo-

rithm to make a best effort in sorting the transactions inside a block,

i.e., provide order fairness where possible and fall back on a backup

mechanism (e.g., a pseudorandom schedule) for those blocks where

such an order does not exist. Thus, in spite of our impossibility

proofs, the protocol as presented so far can be expected to provide

order fairness for most transactions during normal conditions, even

7

31

if our formal model allows for an adversary who assures it never

happens.

It is straightforward to integrate such a function into Wendy,

and have transactions inside each block sorted as fair as possible

before a block is handed over to the blockchain. However, as we

also see cases where a higher level application may want a say in

fairness conflict resolution, we omit this here.

4.4 Fairness using Local Clocks

We now present a different definition of fairness that is slightly

weaker, but that allows for much stronger liveness guarantees.

Definition 8 (Timed Order Fairness). Suppose that all parties have
access to a local clock. If there is a time 𝜏 such that all honest parties

saw (according to their local clock) request 𝑟 before 𝜏 and request

𝑟 ′ after 𝜏 , then 𝑟 must be scheduled before 𝑟 ′.

Note that there is no need for the local clocks to be synchronized

at all; the only formal requirement is that the clock always counts

forward and that no two timestamps are the same. Obviously, the

definition does make more practical sense however if the clocks

are roughly in sync. Using GPS as a timesource with a hardening

layer to prevent GPS spoofing (e.g., [3]) should be sufficient to make

this approach practical. It is also possible to emulate clocks by a

counter of transactions the party has seen. This counter does have

the required properties for our clock, and also can be assumed

to be reasonably synchronised between honest parties. This also

can be combined with blocktime of the underlying blockchain, i.e.,

the blocktime corresponds to minutes and the number of (not yet

scheduled) transactions corresponds to seconds. This approach

would make it easier for new parties to join and resynchronise the

logical clocks if something went wrong.

For our protocol, it is sufficient to assure that if 𝑟 needs to be

scheduled before 𝑟 ′, 𝑟 is in an earlier or the same block. As the

timestamps are included in the block, ordering of requests inside a

block can be performed localy after the block is delivered.

Since the fairness condition changed, the validity of a vote and

of a block also look different.

Definition 9 (Timestamped Vote-Validity). A vote is valid if it

has the proper format, and if the sequence number matches the

sequence on timestamps on requests from that party. Once a party

mismatches the timestamps and the sequence numbers, i.e., there

are two requests 𝑟1 and 𝑟2 such that 𝑟1 has a lower sequence num-

ber and a higher timestamp than 𝑟2, this and all following votes

from that party are considered invalid. Furthermore, a vote is only

considered valid once all requests with a lower sequence number

from that voter have been received.

Definition 10 (Timestamped Block-Validity). A block 𝐵 is valid if

it contains a nonempty set of requests with 𝑛 − 𝑡 valid votes each; a

vote for 𝑟 is valid if it contains the signed votes for all requests for

that block with a lower sequence number. Furthermore, for every

𝑟 in B, if there is a request 𝑟 ′ in the vote validation that had 𝑡 + 1

votes with a lower sequence number than 𝑟 , then 𝑟 ′ needs to be in

B accompanied by 𝑛 − 𝑡 validation votes.

Clocked Wendy for instance ID
All parties:

let 𝑖 be a counter for incoming requests, starting at 0

while no valid proposal has been seen as the proposal for atomic broad-

cast for block 𝑏 do
for all known and unscheduled requests 𝑟 , in the order of

the timestamps on the requests, send the message (𝐼𝐷 ,𝑏,𝑖 ,

timestamp(𝑟),𝑟) to all parties, where 𝑖 is the sequence number

of that request.

end while
Additional protocol for the leader(s):

B = ∅
wait until the first requests 𝑟 is contained in the signed list of 𝑛 − 𝑡

validators; add 𝑟 to B
let R be the set of requests for which a vote for with a smaller timestamp

than 𝑟 was received

wait until there is a set of 𝑛 − 𝑡 parties from which valid votes

for all requests in R are received

for all 𝑟 ′ ∈ R, if timestamps of 𝑡 + 1 votes are smaller for 𝑟 ′ than
the median of the timestamp of the votes for 𝑟 , add 𝑟 ′ to B

The proposal for the next block of the atomic broadcast is B, validated

be the corresponding signed votes in B

Theorem 4. (Safety) If a request 𝑟 is scheduled in a block B, and
there is a request 𝑟 ′such that there is a time 𝜏 in a way that all honest
parties saw 𝑟 ′ before 𝜏 and 𝑟 after 𝜏 , then 𝑟 ′ is in B or an earlier block.

Proof.

Assume without loss of generality that every timestamp has a

unique time. This can easily be assured locally by a high enough

time resolution, and by ordering votes by party identifyer if two

votes have the exact same timestamp.

Suppose at the end of the pre-protocol, we have request 𝑟 ′ ∈ B
and 𝑙 ∉ B, and that 𝑙 has not been scheduled in an earlier block. Let

𝜏1 be the median of the timestamps of 𝑟 .

(1) As 𝑟 ′ ∈ B, at least 𝑡 + 1 parties timestamped 𝑟 ′ before or
during 𝜏1

(2) As 𝑙 ∉ B, at most 𝑡 parties timestamped 𝑙 before 𝜏1.

Suppose by the requirements of timed order fairness, we have to

schedule 𝑙 before 𝑟 ′. As 𝑡 + 1 of the parties that issued votes are

honest, this implies that

(3) there exists 𝜏2 such that 𝑡 + 1 votes contain timestamps for

𝑙 before 𝜏2, and at most 𝑡 votes contain timestamps for 𝑟 ′

before 𝜏2.

By (2), at most 𝑡 timestamps for 𝑙 are smaller than 𝜏1, and by (3)

at least 𝑡 +1 are smaller than 𝜏2; thus, 𝜏1 is smaller than 𝜏2. Similarly,

for 𝑟 ′, by (3) at most 𝑡 timestamps are smaller than 𝜏2, by (1) and

at least 𝑡 + 1 are smaller or equal to 𝜏1. Thus, 𝜏2 is smaller than 𝜏1.

This is a contradiction, and therefore it is not possible that 𝑙 needs

to be scheduled before 𝑟 ′. 2

Theorem 5. If some honest party sees some request, any honest
leader will terminate the protocol with a proposal.

8

32

Proof. As every party sends every request it sees for the first time

to all other parties, every request that is seen by some honest party

is seen – and send to the leader(s) – by all honest parties. Thus,

there is some 𝑟 that is in the signed list of 𝑛 − 𝑡 parties. Once a

leader gets 𝑛 − 𝑡 votes for some 𝑟 for the first time, there is a finite

number of requests 𝑟 ′ for which the leader received a vote before.

As the leader has seen this vote and is honest, it also forwarded the

𝑟 ′ to all other parties, and thus will receive 𝑛 − 𝑡 votes eventually.

Therefore, the waiting statement always terminates for all requests

𝑟 ′. 2

Note: We only need successful termination if an honest leader

exists. All atomic broadcast protocols we are aware of either have a

single leader which is replaced if a liveness problem occurs, or use

more than 𝑡 parties in a leader-like function simultaneously and

thus guarantee that there is some honest leader.

4.5 Optimizations

The two protocols described above can also be combined. The joint

protocol would act like the neverending protocol up until 𝑟𝑚𝑎𝑥 ;

however, instead of aborting the protocol and allowing for plain

unfairness, it switches to the weaker timed definition of fairness

once 𝑟𝑚𝑎𝑥 is exceeded. That approach allows for much more ag-

gressive thresholds, as the fallback protocol is no longer unfair, but

still fair with a slightly weaker definition.

4.5.1 Latency and performance impact. Introducing any kind of

order fairness always has a latency impact. If no fairness is required,

every incoming request can be processed as soon as it arrives.

Order fairness, no matter how it is defined, requires to wait if there

might be other requests with a higher priority. While the mostly
fair protocol allows to parameterise the trade-off between latency

and unfairness – the lower the cutoff parameter, the faster the

worst case protocol and the easier for an adversary cause an unfair

transaction. However, in the benign case, the latency overhead

should be reasonably small.

One (small) speedup can be reached by parallelizing the leader

part of the protocols. Instead of waiting for the first request to add

to B and then sticking to it, the protocol can be run in parallel

for all requests that have been reported by enough parties. In that

case, the first instance that terminates itswhile condition wins and

defines the next block. It is also possible to cut the threshold in the

neverending fairness protocol to 𝑡 +1 by using a more sophisticated

blocking function.

Another parallelization approach would be that the first part of

the protocol where all parties broadcast their orders is permanently

performed, independently of the state of the second phase or the

atomic broadcast. Thus, in most cases, once the atomic broadcast

starts processing the next block, enough votes should have arrived

to terminate the pre-protocol quite rapidly. This approach also

has an interesting impact on the overall architecture – rather than

having a simple API to call the pre-protocol, some part of it now

needs to permanently run in the background. Alternatively, to save

overhead, this could also be included as a piggyback in the gossiping

protocol.

An additional approach to optimize the Neverending protocol is

to allow requests to be removed from B again. Recall that a request

is added to B if it has received 𝑛 − 𝑡 votes and still blocks a request

already in B. This is necessary as we can no longer rely on getting

more votes concerning this request, and to guarantee progress, this

request now needs to be treated as if we know that is has to be in

the same block as the one it blocks. However, as additional votes

come in, it is possible that it unblocks again. In this case, 𝑟 and all

requests that where added to B due to blocking 𝑟 can be removed

from B again, potentially releasing the block earlier.

For the timed protocol, a similar approach can be taken. For this

protocol, we have the advantage that for each request 𝑟 , there is

a finite number of requests that are blocking it. This blockage is

released either once the corresponding request has 𝑡 +1 timestamps

smaller than the median timestamp on 𝑟 (in which case we know

if any other request needs to be scheduled before 𝑟 ′, it also needs

to be scheduled before 𝑟), or if it got 𝑛 − 𝑡 timestamps of which

at most 𝑡 are smaller than the median of 𝑟 (in which case it can

and will be scheduled after 𝑟). To fully optimize latency, we also

need constantly verify if new incoming votes increase the median

of a subset of 𝑛 − 𝑡 votes for 𝑟 , as a higher median increases the

possibility that another request can be decided before it got 𝑛 − 𝑡

votes.

With this modification, we believe that the protocols have opti-

mal latency within our modular architecture, i.e., it is not possible

to hand a block over to the atomic broadcast protocol earlier. The

(informal) argument for the block fairness protocol goes as follows

(from the point of view of a leader):

• Every request that 𝑟 got 𝑡 + 1 votes gets its own B𝑟 , i.e., a

potential block containing 𝑟 and all other requests that have

to be in the same block as 𝑟 .By our fairness condition, we

cannot deliver any request that has seen less than 𝑡 + 1 votes,
as it is possible that another request that is unknown at this

point has 𝑛 − 𝑡 votes that prioritise it over 𝑟 and thus has to

be in the same block. Therefore, for every request that can

be in the next block, the protocol maintains has a B𝑟

• At any point in time, B𝑟 is minimal; the only requests in B𝑟

are requests that either have to be in the same block as 𝑟 , or

might have to according to the information available.

• B𝑟 cannot be finalized while it contains a request 𝑟1 that is

blocked by another request 𝑟2 with less than 𝑡 + 1 votes, as

𝑟2 might still be blocked by a yet unseen request. Thus, the

protocol finalizes B𝑟 at the earliest possible occasion.

A similar argument holds for the timed protocol; again, the

protocol maintains a separate B′
𝑟 for all eligible processes, and

decides about all other requests at the earliest opportunity – either

once it is clear that they can to be in the same block, or once enough

votes are seen to conclude they don’t need to.

If we further want to optimize latency, we could open up the

modularity of our approach. Most voting based atomic broadcast

protocols start with the leader(s) broadcasting the content of the

next block (or a hash thereof). Due to the pre-protocol, we already

know that 𝑛− 𝑡 parties have seen the content of the requests in that

block. Optimizing the interplay between the fairness pre-protocol,

9

33

the atomic broadcast, and the underlying gossip/multicast protocol

is thus certainly promising, but out of the scope of this paper. It also

is possible to integrate our protocol deeper with the blockchain

implementation. With some modifications it could, for example,

replace the first phase of the ABC protocol from Cachin, Kursawe,

Petzold and Shoup [6]. As our goal is a modular approach though,

we will not follow that path at this point.

4.5.2 The combined protocol. There is a set D of transactions that

are ready for the atomic broadcast layer to use. For the ease of

presentation, we assume that the communication layer is aware of

D, and omits any voting messages associated to any transaction

in D. Furthermore, there is a queue Q with which the protocol

communicates with the atomic broadcast. The atomic broadcast

protocol takes the requests in Q from one or several leaders, adds a

block to the blockchain, and then deletes the scheduled requests

from the queues from all leaders.

This version of the protocol is defined as a permanent service

that takes in requests, and outputs blocks for the atomic broadcast

protocol.

4.6 Fairness and Advanced Staking

While the protocol described above is relatively model-independent,

it is described in the classical committee model, i.e., we have 𝑛

parties with one vote each, up to 𝑡, 𝑛 ≥ 3𝑡 + 1 can suffer from

byzantine corruptions. This model translates easily into a stake-

based model, where voting power is related to the stake parties

have. To allow our results to be applicable for more different staking

models, we consider the hybrid-adversary-structure model [15]. In

short, this model generalizes the model by replacing the thresholds

by the corresponding properties that are required to perform the

proof; for example, the threshold 𝑡 + 1 is replaced by sets of parties
of which at least one is honest, while 𝑛 − 𝑡 corresponds to the largest
sets of parties we can afford to wait for without having to rely on
potentially corrupt parties. This allows to not only model weighted

votes, but also take into account properties, e.g., requiring more 2/3
of the stake in more than 2/3 of a set of defined geographic regions
to be honest. In the proofs for our protocols, the two aforementioned

properties are the only properties we need, and the proofs can be

generalized in a straightforward way. Thus, any staking model that

can be formulated this way is compatible with the order-fairness

protocols.

5 PRACTICAL CONSIDERATIONS

While our approach fits nicely into most voting based protocols

due to a similar communication structure, integration with longest-

chain style protocols that can have a more dynamic validator struc-

ture is not as straightforward – even our definitions of fairness

do not make much sense in a Bitcoin or Ethereum style setting

where validators don’t need to be aware of each other and have no

requirement to provide a continuous service. For those protocols,

the fairness protocol would need a set of validators independent

of the actual blockchain, as has been done with Casper, the final-

ity add-on for Ethereum [5]. Since (just as finality in the case of

Pre- Protocol Hybrid Wendy for block 𝑏 and protocol
instance 𝐼𝐷
All parties:

let 𝑖 be the counter of incoming requests, starting at 0.

while true do
for all first seen and unscheduled requests 𝑟 , in the order of

the timestamps on the requests, send the message (𝐼𝐷 ,𝑏,𝑖 ,

timestamp(𝑟),𝑟) to all parties, where 𝑖 is the sequence number

of that request.

end while
Additional protocol for the leader(s):

while true do
once a request 𝑟 is contained in the signed and valid votes from

𝑡 + 1 parties, set B𝑟 to {𝑟 }
while for any B𝑟 ≠ ∅ any request 𝑟 ′ ∉ B𝑟 blocks a request

𝑟 ∈ B𝑟 and there is no B𝑥 of order > 𝑟𝑚𝑎𝑥

if request 𝑟 ′ has at least 𝑡 + 1 votes, add 𝑟 ′ to B𝑟

if a request 𝑟 ′ ∈ B𝑟 , 𝑟
′ ≠ 𝑟, no longer blocks any other

request in B𝑟 , remove 𝑟 ′ from B𝑟

end while
for all 𝑟 for which no request in B𝑟 is blocked by a request

𝑟 ′ ∉ B𝑟 ,

add B𝑟 to the Q, validated by all signed votes for requests

in B𝑟 .

add all 𝑟 ′ ∈ B𝑟 to D, and remove them from all sets B𝑥

if there is a B𝑥 of order > 𝑟𝑚𝑎𝑥

set all B𝑥 = ∅
while all B′

𝑥 = ∅
for all requests 𝑟 contained in the signed list of

𝑛 − 𝑡 validators, set B′
𝑟 = {𝑟 }

for all 𝑟 relating to a nonempty B′
𝑟 ,

let R𝑟 be the set of requests for which a vote for

with a smaller timestamp than 𝑟 was received

let𝑚𝑟 be the largest median of any set of 𝑛 − 𝑡

votes received for 𝑟

once for all requests in R𝑟 𝑛 − 𝑡 valid votes or
𝑡 + 1 votes with timestamps smaller than𝑚𝑟

are received,

for all 𝑟 ′ ∈ R𝑟 , if timestamps of 𝑡 +1 votes
are smaller for 𝑟 ′ than𝑚𝑟 , add 𝑟 ′ to
B𝑟

add B′
𝑟 to Q, validated by all signed votes for requests in

B′
𝑟 .

add all 𝑟 ′ ∈ B′
𝑟 to D, and remove them from all B′

𝑥

end if
end while

Casper) order fairness is not required for all transactions on the

blockchain, but rather a set of transactions for a specific usecase or

market that relate to each other (and potentially a specific smart

contract), different sets of additional fairness validators could be

used for different applications. Another consideration is that our

protocols – as presented here – cannot handle a blockchain that

does not provide finality. The necessary changes are not overly

complicated. Essentially, we’d need to add the ability to rewind the

protocol if a block it assumed delivered is undone.

Our model makes few assumptions on the limits of an attacker -

as long as messages arrive, we assume the attacker has complete

control over the network. While this is (hopefully) unrealistically

strong, it is also necessary – given the multitude of network attacks

10

34

an advanced attacker can make, any constraints on their abilities

should be done with great care, especially in a network that is

supposed to have a very long lifetime. However, this means that

few of the worst case scenarios can be expected to be seen in reality.

Given a block post-processing best-effort algorithm to fairly sort

transactions inside a block, we would expect most transactions

to even satisfy order-fairness on a transaction level. As we have

not tested the protocol on a realistic network yet, this remains a

conjecture for now.

5.1 Integration Interfaces

The goal of our design is to keep Wendy as modular and easy to

integrate into an existing blockchain as feasible. There are three

necessary points of interaction with the underlying blockchain, as

well as two optional ones.

Communication Infrastructure (optional) Unless the fair-

ness protocol is required to provide its own set of validators,

we assume that we can use the communication and authenti-

cation infrastructure provided by the host blockchain. More

precisely, we require access to a multicast primitive that

sends messages to all other validators, as well as the possi-

bility to identify messages from other validators as well as

create and verify all necessary signatures. While we do not

require the multicast primitive to have any security prop-

erties, as common in voting based protocols we do assume

eventual message delivery, i.e., messages are resend until

they arrive or have become irrelevant. While this is not

strictly necessary – an implementation of the fairness pro-

tocol could re-implement this infrastructure – it would be

extremely helpful to have interfaces to those primitives. For a

staking or adversary structure based system, we also require

access to the appropriate evaluation functions to identify the

equivalent of 𝑡 + 1 and 𝑛 − 𝑡 votes.

Block Processing (Optional) In addition, we may require a

block processing functionality. On the protocol level, if fair-

ness requires a request 𝑟 to precede another request 𝑟 ′, we
only assure that 𝑟 and 𝑟 ′ end up in the same block. Fine

grained ordering – where possible – then needs to be per-

formed separately. As this would usually done by a determin-

istic algorithm during block post-processing, we do not detail

this part in this paper; depending on the fairness definition

we used, this algorithm can make a best effort to maintain

fairness where possible given the information provided to it

by the pre-protocol, which should be straightforward. It is an

open (and application-dependent) question at which point

in the protocol this functionality should be executed. One

possibility is to make this a part of Wendy, i.e., Wendy al-

ready proposed internally fully sorted blocks. The advantage

of this approach is that this would eliminate an additional

interface to the host system. On the other side, given the

impossibility results which lead to the possibility of fairness

compromises, it might be helpful for a higher level appli-

cation to have some decision in the choice of the conflict

resolution mechanism.

Block Validity The validation of a correct block needs to take

into account the new fairness rules, i.e., verify the signatures

generated by Wendy and check that the block was generated

following the rules, and assure that the order of sets pro-

posed by Wendy does not get changed, i.e., blocks relating to

the same market-identifyer are proposed in the order Wendy

schedules them. While this is easy to implement, it does re-

quire a change on the side of the blockchain implementation.

The validity function would also implicitly handles the fee-

based incentive of underlying blockchains such as Ethereum

– as an out-of-order block will be considered invalid, there

is no motivation for a validator to propose the blocks in the

wrong order, even if the later one would offer a higher fee.

Transaction Intercept : Rather than going straight into the

local pool of unfinished transactions, all incoming transac-

tions with a fairness requirement need to be handed to the

Wendy first. Transactions that have no fairness-label are

passed through right away into the pool. The other transac-

tions are processed by the pre-protocol and handed to the

pool as a fairness-block.

Chain access : Wendy needs to knowwhich transactions have

been scheduled in a chain, and – in case of a blockchain that

does not offer finality – sufficient information to rewind and

get the new state of the chain if a fork is resolved.

The main change on the blockchain side is that it now needs to

handle blocks of transactions in addition to individual ones, both

with respect to block creation and the underlying incentive scheme.

While there are several ways to implement this - e.g., disguising the

block of transactions as one big transaction. In addition, the sched-

uling algorithm should assure that Wendy-generated blocks are not

proposed out of order - while this is verified in the block validation,

proposing invalid blocks has a rather bad impact on performance.

One additional challenge is posed if the size of the blocks generated

by the fairness protocol can be larger than the blocks processed by

the underlying blockchain. In this case, a mechanism is required to

cut a fairness-block into several blockchain blocks, and reassemble

them after they have been scheduled by the blockchain. While this

is possible, implementing such a functionality on a blockchain with

frequently changing leaders is not trivial. For this paper, we assume

that the underlying blockchain can process sufficiently large blocks,

and instead propose mechanisms to assure that the fairness blocks

stay reasonably small.

5.2 Performance Estimates

Not taking blocking into account, the additional overhead corre-

sponds to one multicast, i.e., the time 𝑛 − 𝑡 honest parties require

to send a simple message to the leader (assuming a leader-based

protocol). This can be done in parallel to the actual protocol; thus,

in a protocol that does not process blocks in parallel (such as Ten-

dermint or HotStuff), the protocol adds to bandwidth usage, but –

not taking into account blocked messages – adds almost no latency

on a well used network (in fact, block generation should suffer

no latency impact at all, apart from the effect of a slightly higher

network utilization; the way latency comes in is that individual

transactions can end up in a later block than they would without

11

35

fairness. The main latency impact thus is through messages being

blocked through our fairness rules. If the network is reasonably

well behaved, and the message ordering is not optimized to slow

down the protocol, a transaction blocking another should be re-

solved rather fast. If a transaction is blocked for an honest leader, it

will take at most two message round-trips until that leader receives

enough information to unblock the message. This is still well under

the block processing time of most blockchains, which would mean

that most transactions will end up in the same block as they would

without fairness, and the remaining ones are very likely to end up

in the next block.

The impact of the communication overhead depends on the un-

derlying blockchain. In an extreme case, if a longest chain protocol

with a large amount of validators is used that would all participate

in Wendy, the overhead would be massive. For a voting based proto-

col, the overhead corresponds to one step of the protocol, and thus

imposes a comparatively low communication overhead. This holds

especially as it is possible to use hashes of transactions rather than

the full content, which makes the signatures the dominant part of

communication complexity. However, as the performance impact

generated here depends highly on the actual network behavior, firm

statements on real world behavior require running experiments or

simulations.

One factor that has a big impact on real world performance

is the usage of market-identifiers. Transactions that have no fair-

ness requirements will not be delayed at all, and transactions can

only be blocked by transactions with the same market-identifier,

which means that – at least for our envisioned usecases – most

transactions on a blockchain will not affect each other.

6 CONCLUSION

We have shown that order fairness is one of the many desirable

properties that is impossible to achieve in a byzantine fault toler-

ant setting. We have mitigated this by providing slightly weaker

definitions of what fair is. We have a presented several protocols

to achieve order fairness with these definitions, as well as a hybrid

version that can switch between two levels of fairness to avoid the

impossibility result. Our protocols are largely blockchain agnostic

(with some additional work needed to combine them with longest-

chain based protocols), and can be added to almost any protocol

that provides a known and active set of validators. Furthermore,

our protocols have optimal resiliency in the asynchronous model

(i.e., 𝑛 ≥ 3𝑡 + 1) and optimal latency in terms of message passing

rounds within our architectural model.

REFERENCES
[1] Abraham, I., Gueta, G., and Malkhi, D. Hot-stuff the linear, optimal-resilience,

one-message BFT devil. CoRR abs/1803.05069 (2018).
[2] Amoussou-Guenou, Y., Pozzo, A. D., Potop-Butucaru, M., and Tucci Pier-

giovanni, S. Dissecting tendermint. In Networked Systems - 7th International
Conference, NETYS 2019, Marrakech, Morocco, June 19-21, 2019, Revised Selected
Papers (2019), M. F. Atig and A. A. Schwarzmann, Eds., vol. 11704 of Lecture Notes
in Computer Science, Springer, pp. 166–182.

[3] Bondavalli, A., Brancati, F., and Ceccarelli, A. Safe estimation of time

uncertainty of local clocks. pp. 1 – 6.

[4] Buchman, E., Kwon, J., and Milosevic, Z. The latest gossip on BFT consensus.

CoRR abs/1807.04938 (2018).

[5] Buterin, V., and Griffith, V. Casper the friendly finality gadget. CoRR
abs/1710.09437 (2017).

[6] Cachin, C., Kursawe, K., Petzold, F., and Shoup, V. Secure and efficient

asynchronous broadcast protocols. In Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings (2001), J. Kilian, Ed., vol. 2139 of Lecture Notes in
Computer Science, Springer, pp. 524–541.

[7] Cachin, C., Kursawe, K., and Shoup, V. Random oracles in constantinople:

Practical asynchronous byzantine agreement using cryptography. J. Cryptology
18, 3 (2005), 219–246.

[8] Castro, M., and Liskov, B. Practical byzantine fault tolerance. In Proceedings of
the Third USENIX Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, Louisiana, USA, February 22-25, 1999 (1999), M. I. Seltzer

and P. J. Leach, Eds., USENIX Association, pp. 173–186.

[9] Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach,

L., and Juels, A. Flash boys 2.0: Frontrunning, transaction reordering, and

consensus instability in decentralized exchanges. CoRR abs/1904.05234 (2019).
[10] Danezis, G., Hrycyszyn, D., Mannering, B., Rudolph, T., and Šiška, D. Vega

protocol: A liquidity incentivising trading protocol for smart financial products.

[11] Duan, S., Reiter, M. K., and Zhang, H. Secure causal atomic broadcast, revisited.

In 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (2017), pp. 61–72.

[12] Dwork, C., Lynch, N., and Stockmeyer, L. Consensus in the presence of partial

synchrony. J. ACM 35, 2 (Apr. 1988), 288–323.
[13] Garay, J., and Kiayias, A. Sok: A consensus taxonomy in the blockchain era.

Cryptology ePrint Archive, Report 2018/754, 2018. https://eprint.iacr.org/2018/

754.

[14] Kelkar, M., Zhang, F., Goldfeder, S., and Juels, A. Order-fairness for byzantine

consensus. Springer-Verlag.

[15] Kursawe, K., and Freiling, F. C. Byzantine fault tolerance on general hybrid

adversary structures. Tech. rep., RWTH Aachen, 2005.

[16] Kursawe, K., and Shoup, V. Optimistic asynchronous atomic broadcast. In

Automata, Languages and Programming, 32nd International Colloquium, ICALP
2005, Lisbon, Portugal, July 11-15, 2005, Proceedings (2005), L. Caires, G. F. Italiano,
L. Monteiro, C. Palamidessi, and M. Yung, Eds., vol. 3580 of Lecture Notes in
Computer Science, Springer, pp. 204–215.

[17] Lev-Ari, K., Spiegelman, A., Keidar, I., and Malkhi, D. Fairledger: A fair

blockchain protocol for financial institutions. CoRR abs/1906.03819 (2019).
[18] Miller, A., Xia, Y., Croman, K., Shi, E., and Song, D. The honey badger of bft

protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2016), CCS ’16, ACM, pp. 31–42.

[19] Reiter, M. K., and Birman, K. P. How to securely replicate services. ACM Trans.
Program. Lang. Syst. 16, 3 (May 1994), 986–1009.

[20] Robinson, D., and Konstantopoulos, G. Ethereum is a dark for-

est. https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff,

2020. Accessed: 2020-09-09.

12

36

https://eprint.iacr.org/2018/754
https://eprint.iacr.org/2018/754

	Abstract
	1 Introduction
	2 Model and Architecture
	2.1 Related Work

	3 The impossibility of Fairness
	4 Circumventing the impossibility
	4.1 Armageddon
	4.2 Relative Synchrony Assumption
	4.3 Probabilistic Block Order Fairness
	4.4 Fairness using Local Clocks
	4.5 Optimizations
	4.6 Fairness and Advanced Staking

	5 Practical Considerations
	5.1 Integration Interfaces
	5.2 Performance Estimates

	6 Conclusion
	References

